

Approach to Hub Design

Dr. Emre Serpen, Executive Vice President, InterVISTAS Mr. Joeri Aulman, Region Manager India, NACO

Overview of Hub Design Process

Situation Analysis'

- Competitive analysis of demand and supply
- · Benchmark competing hubs
- SWOT and targets for hub design/improvement

Market Forecast

- Top down and bottom up market forecast
- Analysis of future markets: growth, yield,

Hub Design

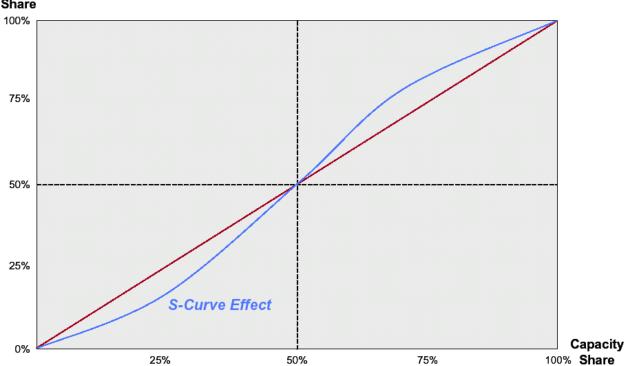
- Airline service design criteria and scenario formulation
- Hub Design to maximise revenue/contribution

Multi Hub Design

- · System improvement and consolidation
- Multi hub system design

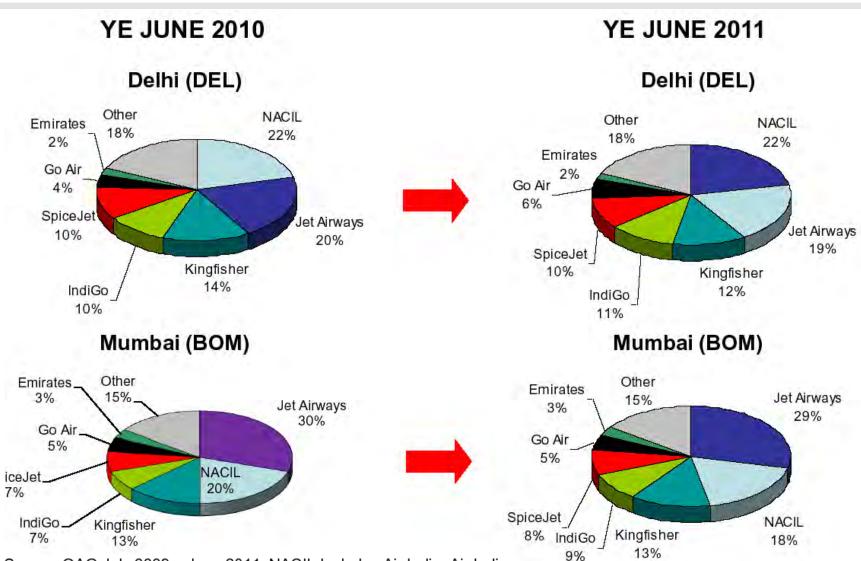
Con straints

- Establish constraints
- Develop and value impacts



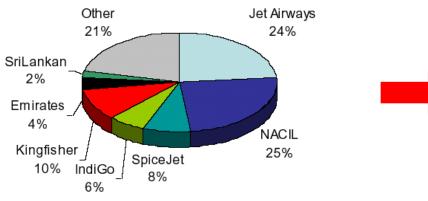
Sufficient S-curve effect?

- High yielding business passengers, prefer airlines that offer the most frequency in a given O&D markets
- Market dominance, is a an airline's ability to achieve a passenger or revenu share in excess of its capacity share
- Dominant airlines typically have positive share gaps, and achieve yield premiums vs. competitors.: S curve effect

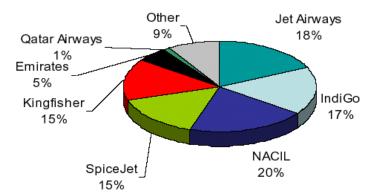

Revenue Share

Overview of Indian Airports

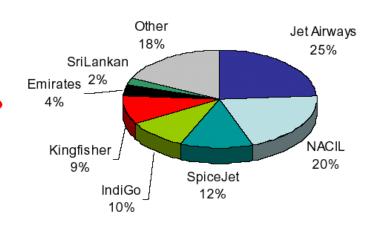
Source: OAG July 2009 – June 2011, NACIL Includes Air India, Air India Express and Indian Airlines, Jet Airways includes Jet Lite



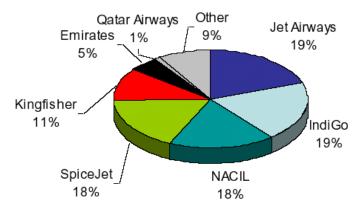
Overview of Indian Airports



Chennai (MAA)



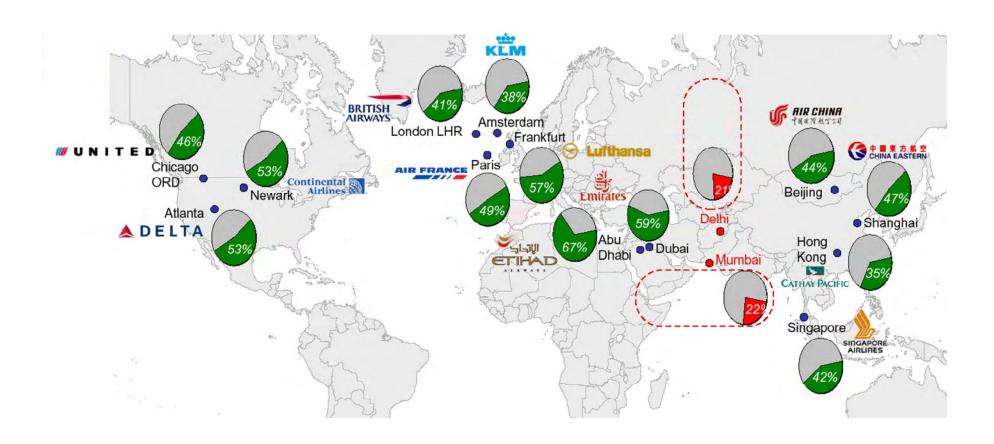
Hyderabad (HYD)



YE JUNE 2011

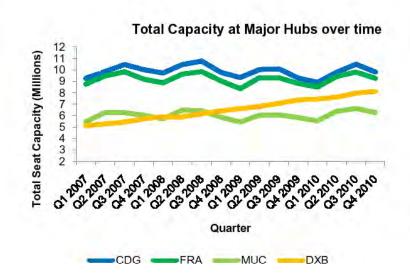
Chennai (MAA)

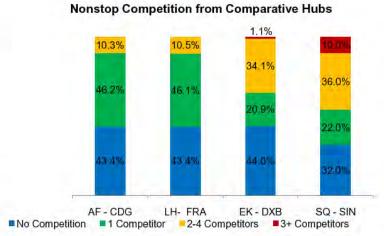
Hyderabad (HYD)


Source: OAG July 2009 - June 2011, NACIL Includes Air India, Air India Express and Indian Airlines, Jet Airways includes Jet Lite

Comparison with other hubs

Worldwide we see dominant carrier with leading share

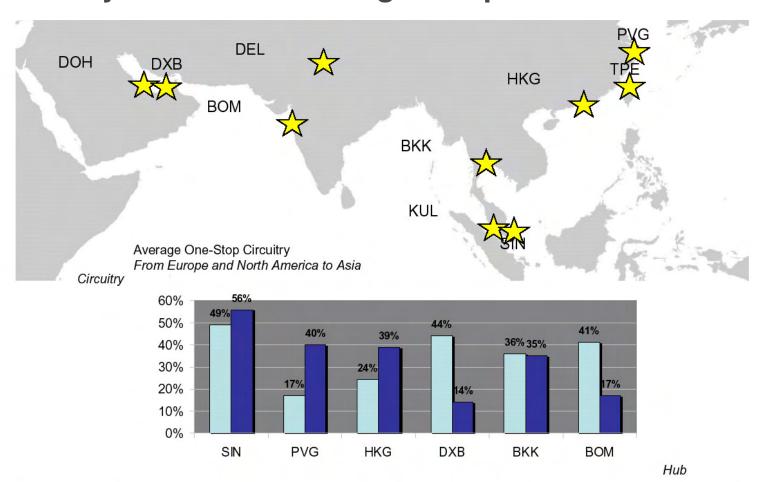





Benchmark competing hubs

Identify Opportunities & Weaknesses

	EK - DXB								
		Destinatio	Frequencie						
Region	Countries	ns	S						
Africa	16	18	159						
Domestic	0	0	0						
Europe	13	24	288						
Far East	9	12	168						
Latin									
America	1	1	7						
Middle East	10	13	200						
North									
America	2	5	38						
Oceania	2	6	98						
South Asia	5	17	275						
TOTAL	58	96	1,233						

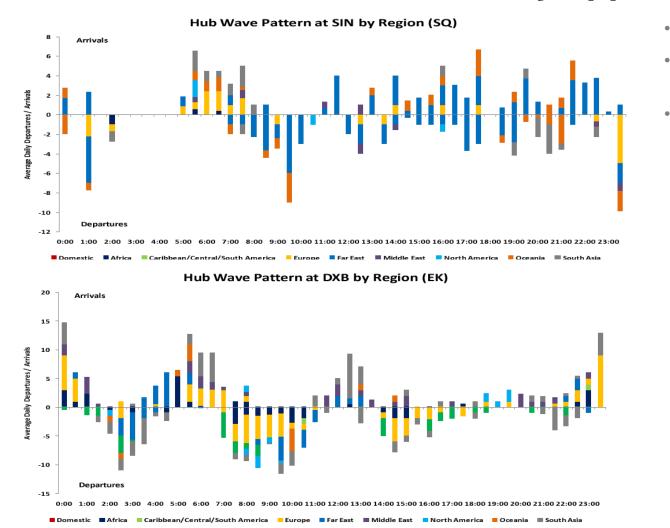

SQ - SIN						
	Destinatio	Frequencie				
Countries	ns	S				
2	3	14				
0	0	0				
11	14	100				
11	18	344				
0	0	0				
3	5	32				
1	5	45				
2	7	113				
4	9	69				
34	61	717				

Circuitry (uni-directional)

Identify own hub advantage compared to other hubs

Source: Great Circle Distance calculator; Note: Circuitry represents pct. diff. in distance between a non-stop flight vs. connection over a given hub. For trips from the 20 largest inter-regional origins (by seats) in North America (blue) and Europe (green) to the 20 largest hubs in Asia and Australia (by seats)

Leverage strengths of own hub


Completion

Time of Day

advantage

advantage

Do detailed review to identify opportunities

Check demand/supply changes

Focus both on region and market level

Region-	Circuitry	Yield		Onboard	d O&D	Industry (D&D	Grov	vth	A1 Share
Region		Aug-09	Aug-10	Aug-09	Aug-10	Aug-10	Aug-10	A1	Industry	of Industry
EU-NO	108%	8.8	9.0	869,909	1,019,118	8,330,229	8,479,367	17.2%	1.8%	12%
NO-EU	109%	8.7	9.1	835,797	986,496	8,330,229	8,479,367	18.0%	1.8%	12%
AP-AF	107%	9.4	9.3	657,943	703,314	5,776,835	5,630,906	6.9%	-2.5%	12%
AF-AP	106%	9.4	9.3	655,028	701,660	5,776,835	5,630,906	7.1%	-2.5%	12%

- Relative growth of region to region flows considering yield and circuitry
- Benchmark connectivity with key competitors considering yield
- 3. Historical growth O/D growth
- Relative growth of airline market share share compared to O/D market flow considering yield and circuitry

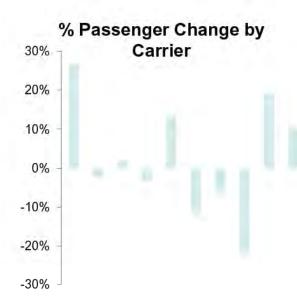
Region	A1 _	A2	А3	Yield
EU-EU	6.2	6.6	8.5	9.6
LA-EU	9.4	9.2	11.0	9.1
EU-NO	9.1	9.1	10.6	9.0
AP-EU	9.5	9.1	8.8	9.3

Connect Markets	2005	2006	2007	2008	2009	2010
CDG-MED	87	391	853	793	1,717	2,566
DAM-MXP		35	29	56	2,347	2,561
PEK-ODS	1,452	2,050	1,195	1,539	2,539	2,528
BKK-TLV	847	1,294	2,308	3,745	3,679	2,499

Connect	Service	Share	O&D Share		% Cha	ange	CCt		
Markets	Jan-09	Jan-10	2009	2010	Service	O&D		O&D	Yield
BKK-ARN	0.8%	0.9%	2.0%	3.3%	8%	61%	101%	6,786	3.0
PEK-TIP	0.6%	0.7%	1.6%	2.9%	4%	79%	101%	5,968	3.0
IKA-YYZ	1.4%	1.3%	7.3%	8.9%	-9%	23%	110%	5,674	2.8
ALG-MED	50.2%	100.0%	86.0%	86.3%	99%	0%	117%	5,196	7.7

Focus on city pairs we want to develop/improve

Important to consider circuitry & yield



Check demand/supply changes

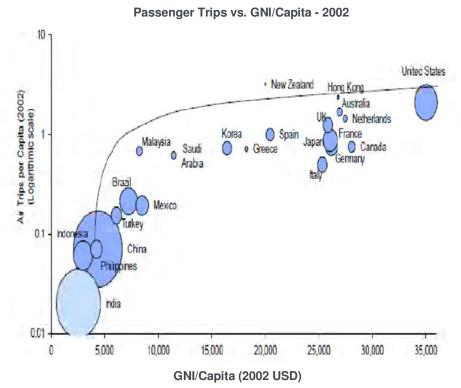
Focus both on region and market level

- 100 o/d thru the hub, relative changes of share of different airlines – given the hub advantage of the home airline
- Relative market share growth of the hub carrier compared with overall O/D market growth
 - Growing share of growing O/D
 - Reducing share of growing O/D
 - Growing share of reducing O/D
 - Reducing share of reducing O/D
- Above analysis vis a vis hub carrier's share and average O/D fares

City Pair	Total O&E) Pax	A1 O&D P	ax	A1 market	share	ı	Market growth		7	Average far	es in US\$	
							Total O&D market	A1 A1 grov	sh <mark>a</mark> re wth	otal market	A1	Total market	A1
	2009	2010	2009	2010	2009	2010		(in _l	pct points)	2009	2009	2010	2010
AUH - KUL	316,744	375,481	1,078	527	0.3%	0.1%	18.5%	-51.1%	-0.2%	444	345	393	389
BKK - DOH	236,195	236,616	11,824	7,020	5.0%	3.0%	0.2%	-40.6%	-2.0%	181	162	184	161
AUH - SIN	162,075	199,025	165	186	0.1%	0.1%	22.8%	12.7%	0.0%	957	608	1065	416
AUH - BKK	150,334	161,140	283	206	0.2%	0.1%	7.2%	-27.2%	-0.1%	978	253	1071	412

Leverage strengths of own hub

Do detailed review to identify opportunities


Hub improvement by definition is in future, and environment analysis focused on present and past is insufficient

Market forecast should include both long term and (GDP driven) and short term (Paxis, Calibrated MIDT driven) elements

- Base year O&D market sizes
- Point of Sale by origin and destination country shares for each O&D market
- GNI Growths for each origin and destination country*
- •GNI Multiplier: GNI Growth/Passenger Growth for each country

Markets are forecast on an airport O&D pair basis, and then summarized for the city pair, and then for the country pair basis

Air travel, which is correlated with wealth, has increased over the years with a rise in global GNI

Note: Air Trips per Capita calculated using the number of passengers carried by the airlines of each country. Circle indicates population size

Leverage strengths of own hub

Objective is to focus on large, fast growth, high yield third/fourth freedom, and good circuitry, and fifth and sixth freedom O/D

Further to market forecast slice and dice to identify markets for scenario development, following are examples

- Largest region to region markets
- Largest and Fastest growing region to region markets
- Largest country to country markets
- Largest and Fastest growing country to country markets
- Fastest growth X largest markets (prioritize by product of fastest growth and largest markets)
- Prioritize by largest markets
- Prioritize by fastest growth markets
- Prioritize by fastest growth X largest markets that airline is not flying
- Prioritize by largest markets that airline is not flying
- Prioritize by fastest growth X largest markets that airline is not flying
- Given the growth and strategic fit, identify largest airport that airline is not flying

Examples

Country Flows	2010	2014	Yield	CAGR
Kuwait -India	2,000	3,500	180	10%
India-Saudi Arabia	1,900	3,300	250	11%
India-United Kingdom	1,300	2,400	170	10%
India-Indonesia	1,200	2,300	170	11%
Australia-UK	900	1,500	180	9%

Airport Markets	YTD		2014	Yield	CAGR
COK-DXB		520	1,000	250	12%
CAN-DXB		580	1,000	150	10%
BKK-DXB		400	800	120	11%
BKK-BOM		270	500	400	12%

Code	Airport	Country	Region	Notes
ABV	Abuja	Nigeria	Africa : Central/Western Africa	Possible less than Weekly frequency, less competition, Growing Market
	-		A CONTRACTOR OF THE CONTRACTOR	

Hub design principles - overview

Inputs

Market forecast

Route growth

Frequency growth

Positive share gap markets

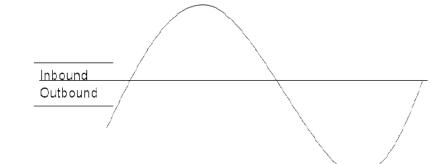
Airport constraints

Competitive strengths & weaknesses

Outputs

Maximize hits (Connectivity)

Maximize passenger flows (6th freedom)


Maximize yield, load factors, RASK

Minimize/acceptable delays

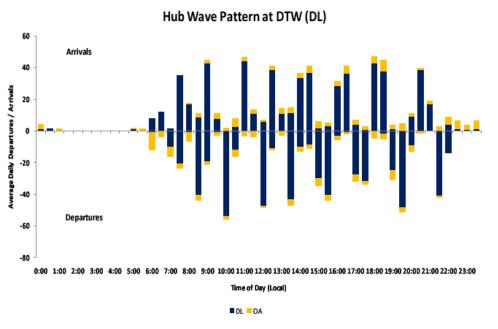
Optimize effective use of airport/airspace constraint

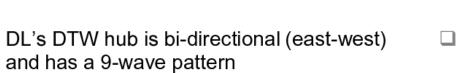
Reliable schedule (dependability)

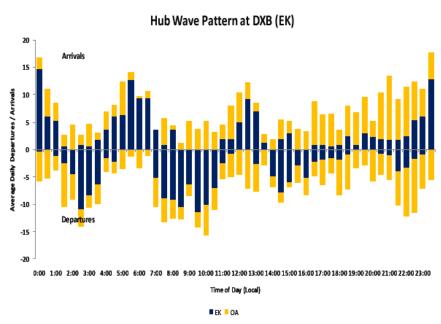
Maximize aircraft utilization

Design process schedule is a generator of alternatives, and selection of the best fit. Ideally, this is a combination of different optimization tools

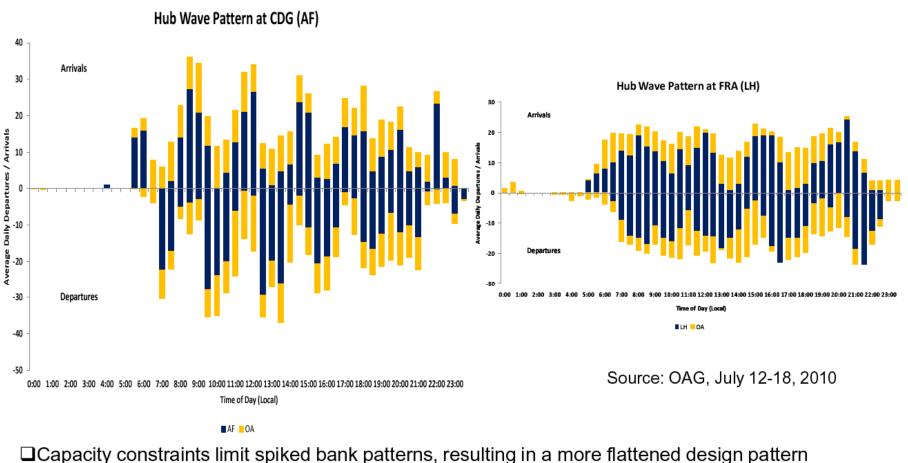
Selecting the Best Hub Structure Requires Definition Alternative competing hub structures and selection of the best structure that leads to the optimal outputs


Peer Hub Bank Time Comparison						
	AF @ CDG	LH @ FRA	EK @ DXB			
BDI	1.50	3.75	3.17			
BDO	1.57	3.88	3.50			
MCT	1.00	0.75	0.75			
BDT	4.07	8.38	7.42			
# Banks	7	4	3			


Source: OAG, July 12-18, 2010

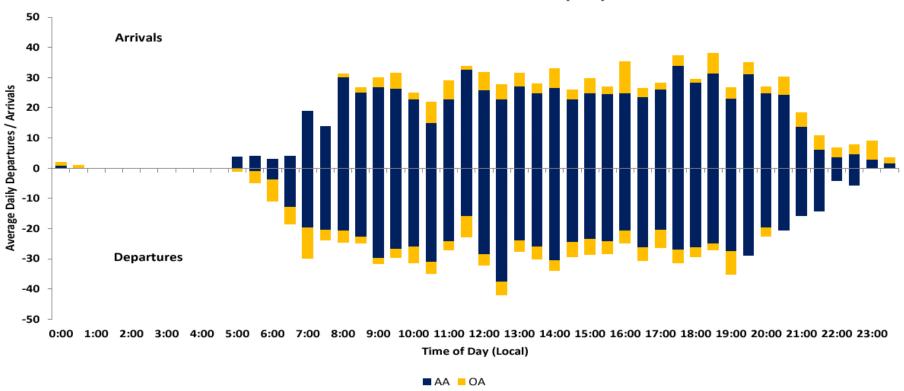

Bi- versus Omni-Directional hub

- Bi-directional hubs typically have 6+ waves in their daily hub structure
- This type of structure is most commonly found in U.S. hubs


- EK's DXB hub is omni-directional and has a 3-wave pattern
- Omni-directional hubs are more commonly found in European, Gulf and Asian hub patterns and typically have 3-7 waves per day

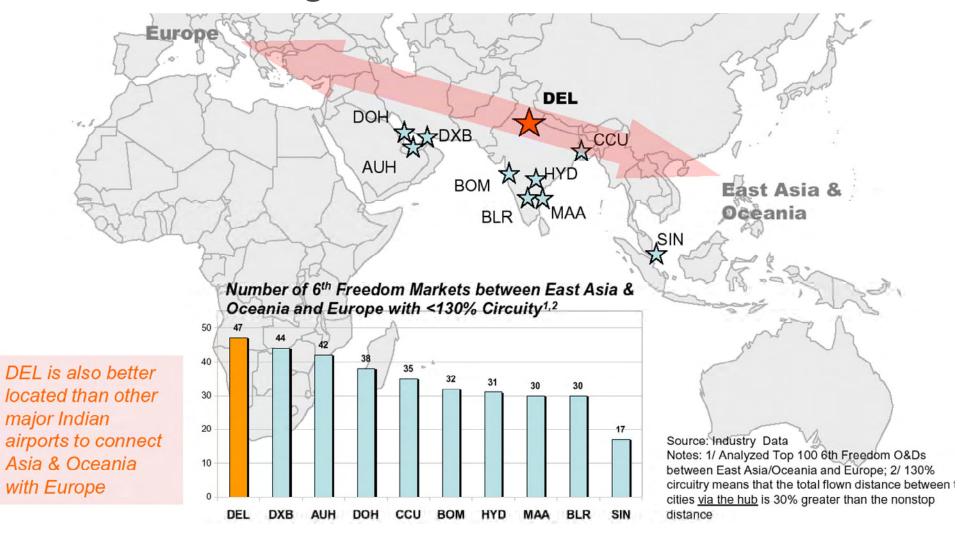
Source: OAG, July 12-18, 2010

Impact of Capacity Constraints


- Serves many connections involving long-haul flights using wide body aircraft
- □A trade-off exists between bank overlap and number of connections
- □Revenue benefit of longer connections gained offsets revenue lost by bank overlap

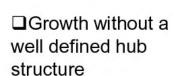
De-peaking to reduce OPEX

- AA employs a continuous, or rolling wave pattern at it's primary (largest) hub at DFW
- The operational efficiency benefits of this structure outweigh the financial benefits of increased directional connectivity

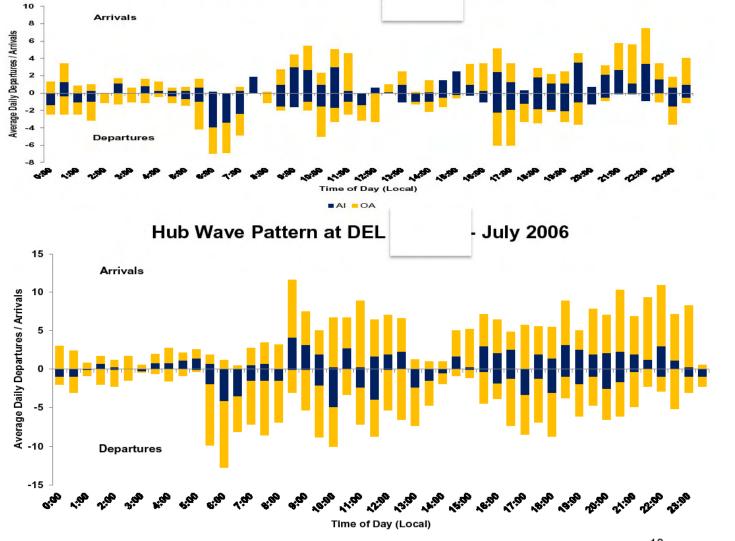

Source: OAG, July 12-18, 2010

Delhi hub - geography

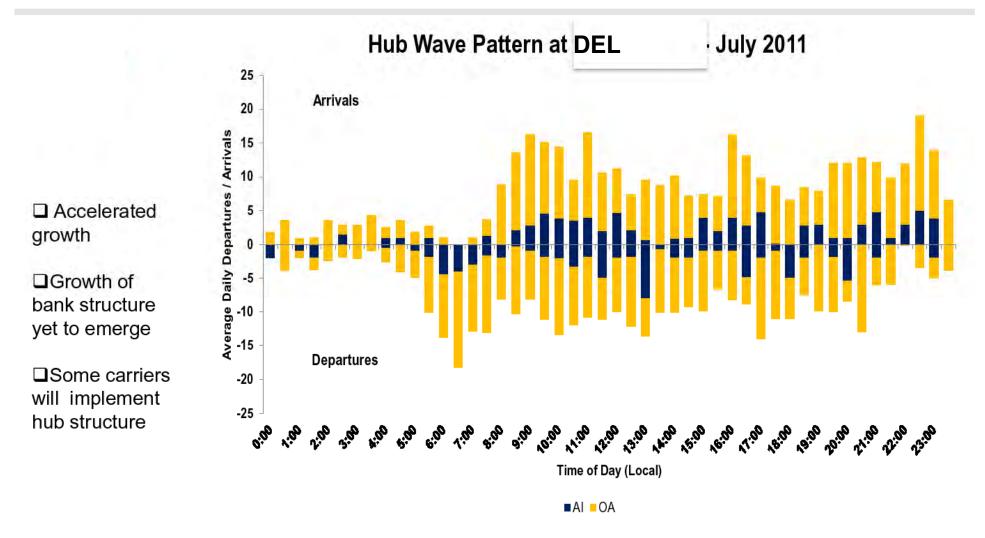
Direct routing to 6th Freedom markets



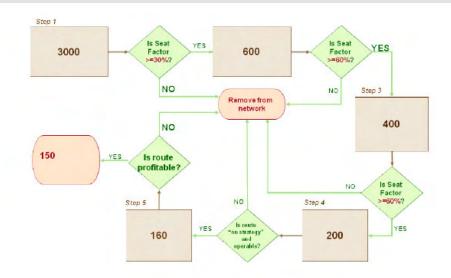
Delhi hub - growth pattern

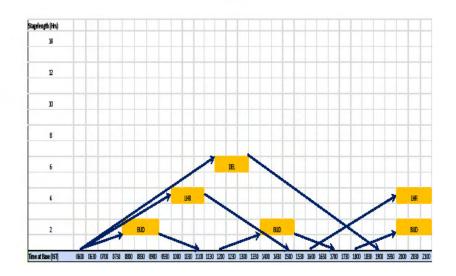

Hub Wave Pattern at DEL

July 2001


□Opportunities lost for connecting markets and growth opportunities for 6th freedom traffic

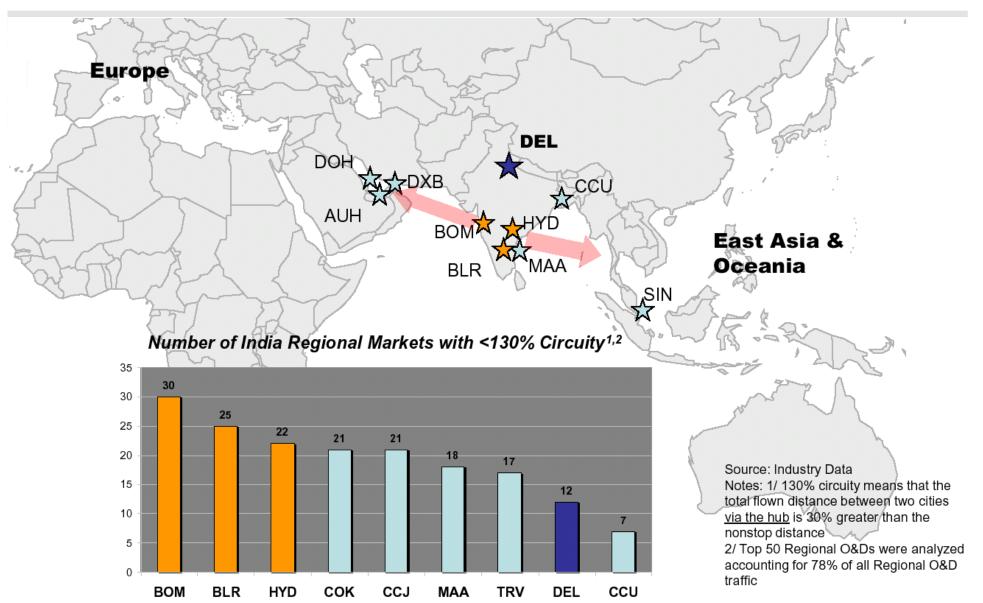
Delhi hub - growth pattern


Source: OAG, July 11-17, 2011

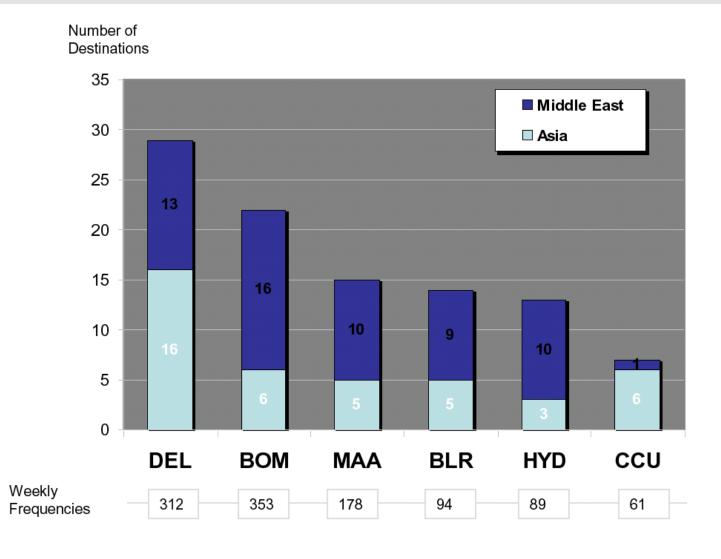


Hub Design & Optimisation

- □Overbuild maximise margins
- □Lang haul flights optimisation
- ☐ Medium to short haul flights optimisation
- ☐Within bank flight optimisation
- ☐ Maximising connection of high yield markets
- □Optimise hub connectivity



BOM/BLR/HYD - Regional Hubs?



Comparative airport assessment

Source: OAG July 2009 - June 2011

Hub Evaluation Criteria

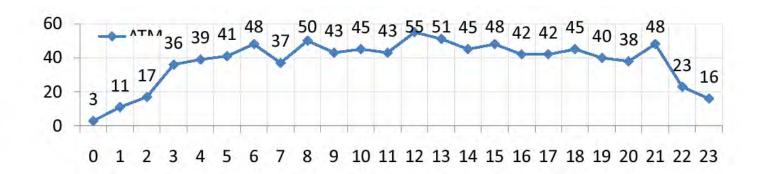
Primary Hubs

Evaluation Criteria	Minimum Requirement
Intl O&D demand	>1.5 million annual pax in 2008
Dom O&D demand	>1.5 million annual pax in 2008
Good circuity for 6 th Freedom markets	>30 of top markets <130% circuity
Potential for strong presence	achieves ranking in top 2 by seat share
Apt capacity for hubbing	>40 gates available simultaneously

Secondary Hubs

Evaluation Criteria	Minimum Requirement
Regional O&D demand	>1 million annual pax in 2008
Dom O&D demand	>1 million annual pax in 2008
Good circuity for regional markets	>20 of top regional markets <130% circuity
Good circuity for domestic markets	>20 of top domestic markets <130% circuity
Apt capacity for hubbing	>20 gates available simultaneously

Criteria applied to India


Evaluation Criteria	вом	DEL	CCU	MAA	BLR	HYD	AMD	сок	CCJ	TRV	PNQ	NAG	ATQ	GOA	TRZ
Intl O&D demand	1	1		1				1							
Dom 0&D demand	1	1	1	1	1	1									
Good circuity for 6 th f'dom mkts	1	1	1												
Strong presence	1	1	1	1		1	1	1	1	1		1	1	1	1
Apt capacity for hubbing	1	√		√	1	1									
Conclusion															

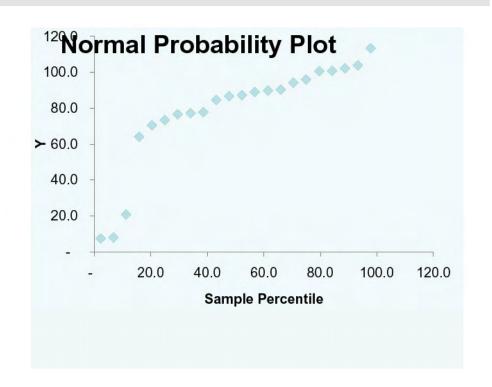
Only BOM and DEL satisfy all of the criteria to be a Primary Hub

Constraints – Current levels

Current Flight Delays	Airspace Pad Fahing Stots MCTs Ground Time
	Runnay Gales Capanina, Handing Aicraff
	as acity of the same

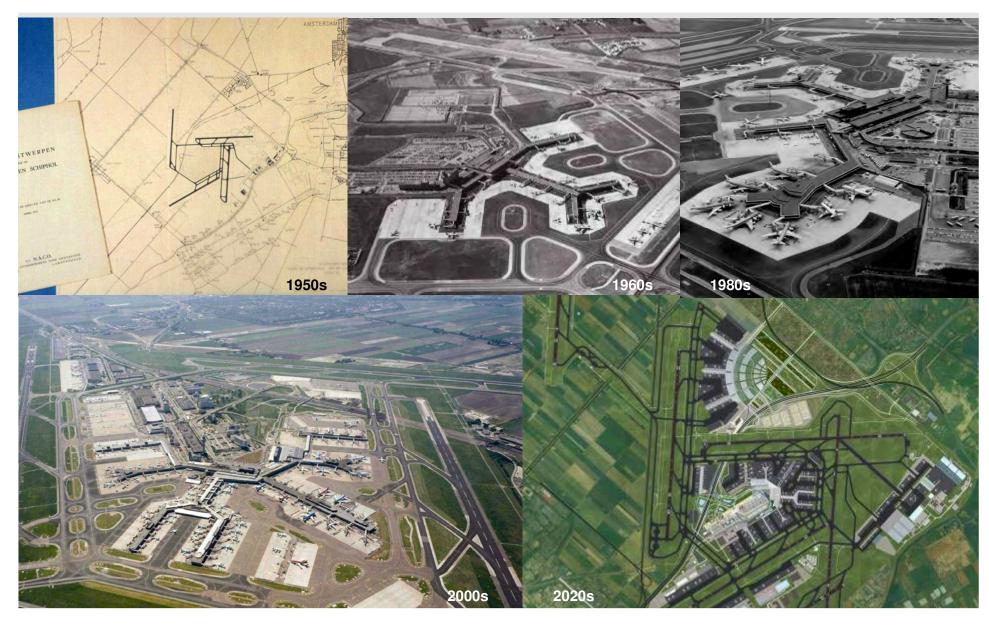
			Standard				Hub Carrier #1				Hub Carrier #2			
Airport	HC1	HC2	D-D	D-I	I-D	1-1	D-D	D-I	I-D	1-1	D-D	D-I	I-D	1-1
AMS	KL		25	50	50	50	50	50	50	50				
AUH	EY		60	60	60	60	60	60	40	60				
BKK	TG		30	120	120	75	30	90	90	45				
CAI	MS		30	90	90	90	60	60	60	60				
DOH	QR		20	60	60	60	20	60	60	30				
DTW	DL		45	60	90	60	30	40	75	75				
DXB	EK		20	60	60	75	20	60	60	45				
FRA	LH		45	45	45	45	45	45	45	45				
HKG	CX		n/a	n/a	n/a	60	n/a	n/a	n/a	50				
IAH	CO		45	60	60	75	30	30	50	50				
ICN	KE	OZ	40	100	100	70	40	70	100	45	40	70	90	45
IST	TK		30	90	75	60	45	75	75	60				
KUL			60	60	60	60								
MSP	DL		40	40	60	60	30	40	75	75				
MUC	LH		45	45	45	45	30	30	30	30				
NRT	JL	NH	30	100	100	60	20	100	90	60	20	100	100	60
PHL	US		40	90	90	90	30	50	90	90				
SAW	TK		20	60	60	60	30	45	45	45				
SEA	AS		70	70	90	90	40	40	80	80				
SIN	SQ		n/a	n/a	n/a	60	n/a	n/a	n/a	50				

Source: InterVISTAS Analysis

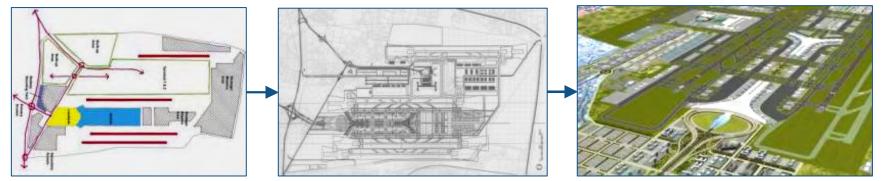


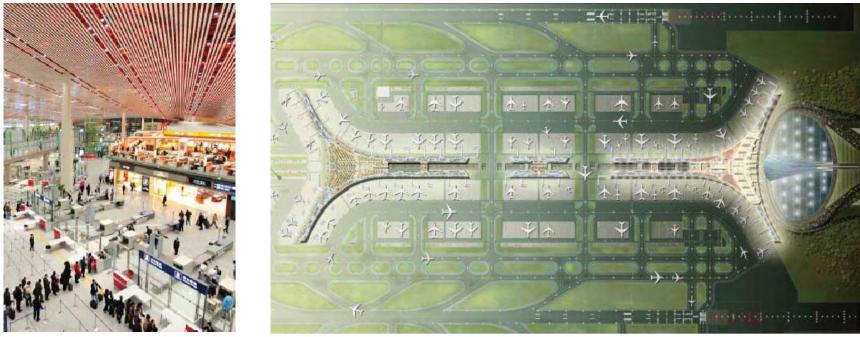
Constraints - Future delays

- □Growth of constrained hubs will expend delays
 □Establish baseline in terms of correlating delays to ATM
 □Values of constraints
- Avg. Delay * 2010)


ATM as a % of current ATM


Development of Amsterdam Airport Schiphol


King Abdulaziz International Airport, Jeddah

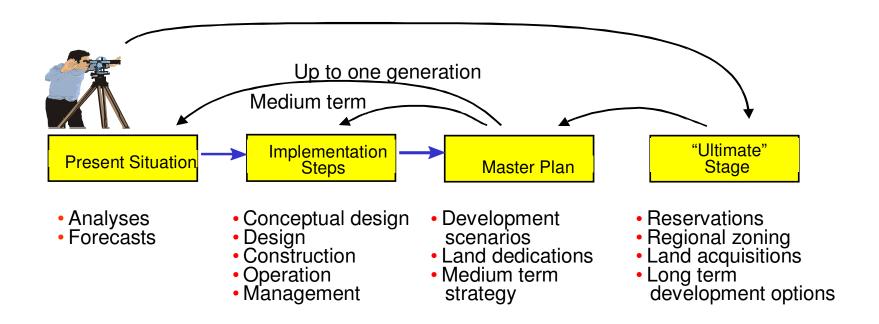


Bejing Capital International Airport

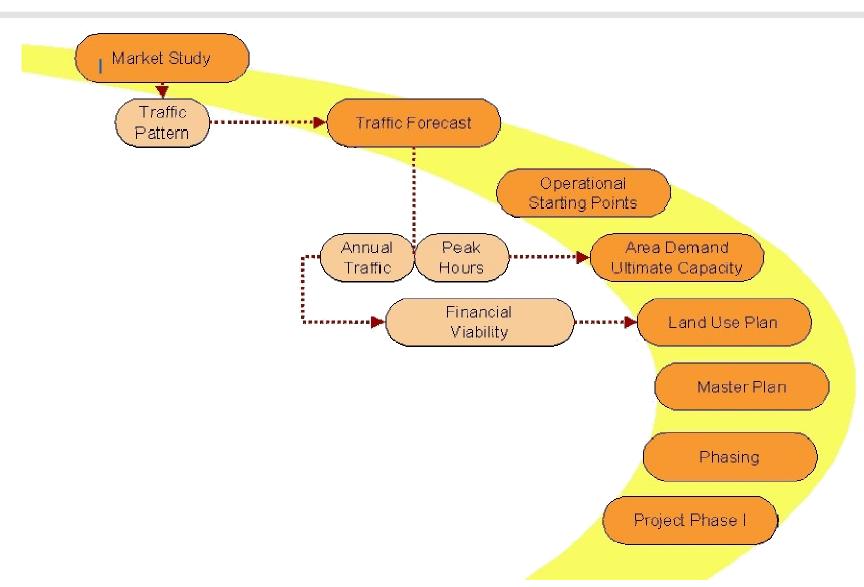
NACO: From Land Use Plan to Master plan: Beijing Capital International Airport, China

Followed by NACO i.a.w. Foster & Arup winning the design competition for the Midfield T3.

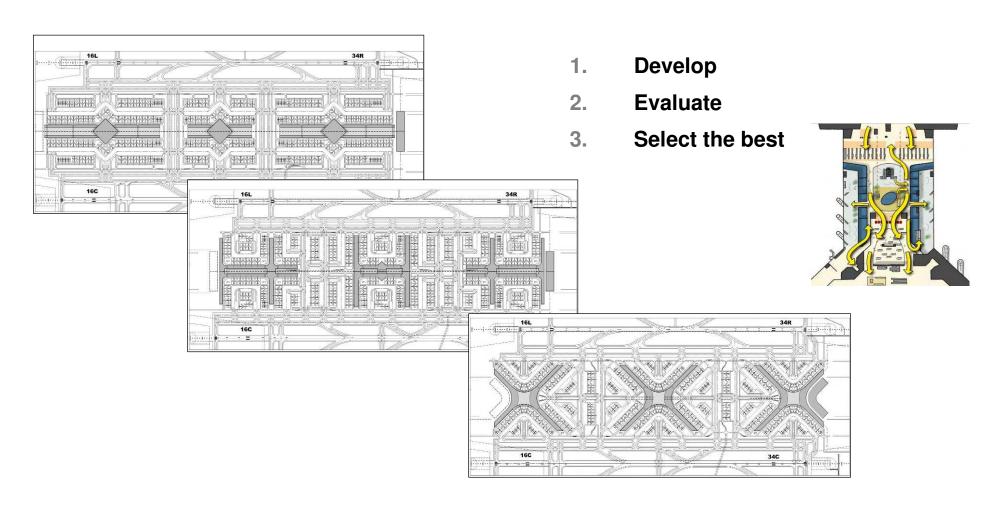
Various NACO projects



DEVELOPMENT OF A MASTER PLAN



STEPS IN MASTER PLANNING



TERMINAL CONCEPT ALTERNATIVES

- > Terminal Concept according to land use plan and facility sizing
- → Analyze alternatives (strengths, weaknesses, threats and opportunities)

emre serpen

EXECUTIVE VICE PRESIDENT

Emre led the design of Delhi and Mumbai hubs part of the new network stratrgy for Air India. He is currently leading design of Ataturk hub for Turkish Airlies, previously led design of the Cairo hub after first year of implementation project delivered \$ 60 million USD benefit . Emre is also currently leading a team for SLA, where project scope includes hub improvement .

Emre is focused on developing and executing optimal and implementable solutions in both strategy and business transformation assignments. His extended client relationships are driven by the delivery of business results.

•In Airline space, Emre has worked with over 40 carriers worldwide. Projects include feasibility, network design, revenue management, distribution, operations control, crew management and IT Strategy.

He won the 2002 ATTIS outstanding contribution award for his work in low cost modelling. Previously Emre led transformation practicefor SH&E, airline consulting for EMEA & APAC for Sabre, led IM for Travel and Transport in Gemini, and established technology consulting business for Ove Arup.

•Emre has a PhD in Cybernetics, and BSc in Industrial Engineering. He is a Chartered Engineer.

Dr. Emre Serpen +44-794-416-3891 emre.serpen@intervistas.com

joeri aulman

REGION MANAGER INDIA

Following the completion of the Mumbai Master plan by NACO, Joeri led the stakeholder meetings for the International Terminal Reconfiguration at Mumbai Airport; one of the primary enabling works to facilitate the development of a new common terminal building at Sahar.

He is currently leading design of Sarajevo International Airport Terminal expansion and, as Region Manager South Asia, managing NACO's projects in India.

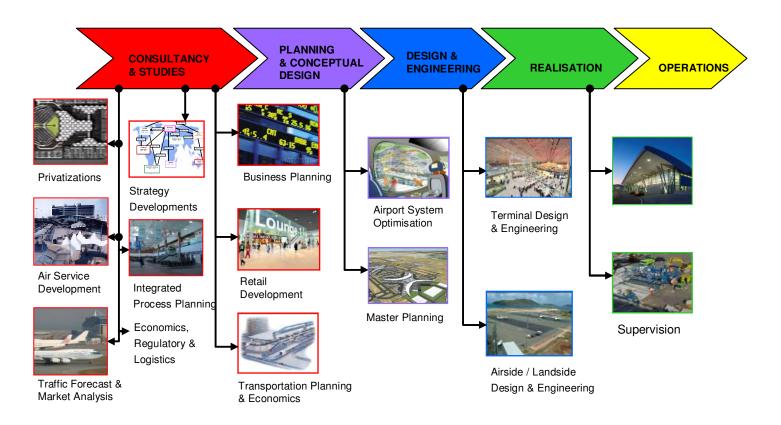
This includes the following projects:

- Design for CSC's Greenfield Air Cargo Terminal at IGIA;
- MRO Bid Design for Punj Lloyd at IGIA;
- Landside Business Planning for Gulbarga Greenfield Airport;
- -Terminal Design for Gulbarga Greenfield Airport.
- -Previously Joeri was Business Unit Leader for ACLA's projects in India, a boutique Urban Design & Planning company, based in Hong Kong & Singapore.
- -Joeri has a masters of science in Architecture.

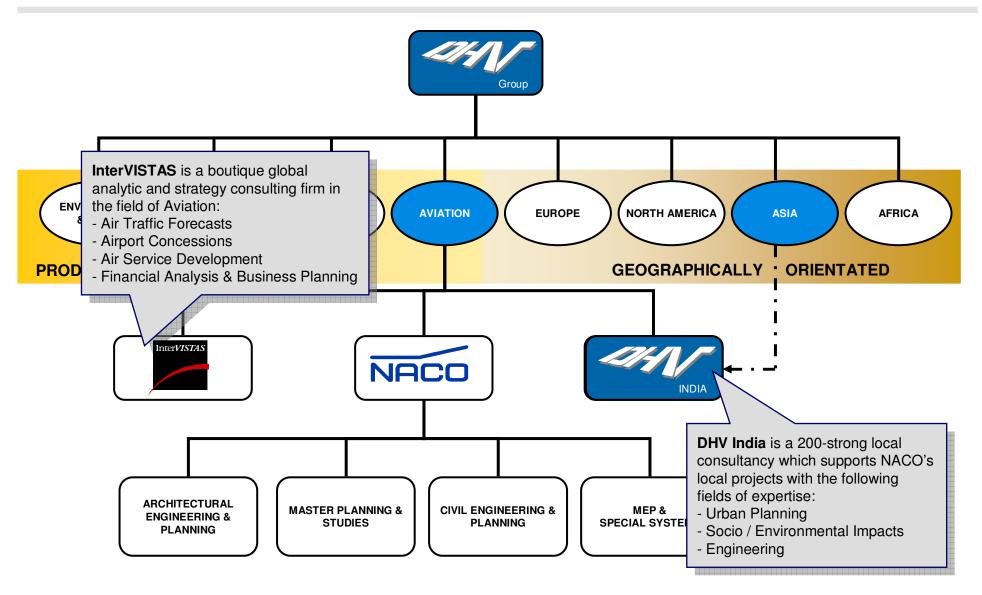
Joeri Aulman +91 9820510204 Joeri.aulman@naco.dhv.com

Our mission is to provide multidisciplinary, multilevel services and leading-edge solutions for the sustainable development of the aviation sector. We aim to bridge the gap between strategy and operations and economical and technical aspects.

We offer


- One stop shop approach
- Integrated expertise to provide multi-level services
- Independent advice

NACO and InterVISTAS are your partners for providing integrated strategic, operational and technical solutions.


For over 60 years the companies have been at the forefront of airport development.

We assist you with defining and realizing your ambitions. Translating your vision into *sustainable* and *concrete* implementation plans

- Public-Private Partnerships & Finance
 - → MOPA Greenfield Goa Airport Air Traffic Forecast
 - → Mumbai International Airport Bid Services
- Commercial & Airport City Planning
 - → Gulbarga Landside Commercial Business Plan
- Master Planning
 - → Mumbai International Airport Master Plan
 - → Bangalore International Airport Master Plan Update
 - > Jaipur DMIC Aerotropolis Master Plan

- Airport Engineering
 - → BIAL MRO Plot Leveling & Utility Study
- Airport Design
 - → Gulbarga Terminal Design
 - → CSC Greenfield Cargo Terminal, IGIA
 - → MRO Bid Design, IGIA

NACO-InterVISTAS in the world (1)

Planning

- Master Plan, King Khaled & King Fahd International Airport
- Master Plan, Vladivostok International Airport
- Development Plan, Mumbai International Airport
- National Airport Master Plan, Malaysia

ት

Facility Planning & Design

- Lounge 1, Schiphol International Airport
- Terminal 3, Beijing Capital International Airport
- New terminal, Pulkovo International Airport
- New terminal, Sir Seretse Khama International Airport

+

Infrastructure Planning & Design

- Airside renovation, Taiwan Taoyuan International Airport
- 5th runway, Schiphol International Airport
- Airside & landside infrastructure,
 Abu Dhabi International Airport
- 4th runway, Frankfurt International Airport

宁

Construction Management

- Terminal 3, Cairo International Airport
- New terminal, Gibraltar International Airport
- New Terminal, Sofia International Airport
- New terminal, Princess Juliana International
- New runway, Atyrau International Airport

NACO-InterVISTAS in the world (2)

+

Air Service Development

- Air Service Development, Abu Dhabi
 International Airport
- MRO Development Strategy,
 Don Mueang Airport, Bangkok
- Impact of Air Service Liberalization, several countries

+

Public-Private Partnerships & Finance

- Pristina International Airport
- Skopje and Ohrid Airport
- Queen Alia International Airport
- New York JFK International Airport

(+)

Commercial & Airport City Development

- Airport Cities Development,
 Shenzhen Bao'an International Airport
- Retail Program Terminal 4,
 New York JFK International Airport
- Concession Planning, Schiphol Plaza
- Airport Walkthrough Store, Jersey Airport

+

Border & Security Services

- Pre-clearance, Shannon Airport
- US Quick Connect, Edmonton Airport
- Business Case for Automated Borders

