### Aviation non-CO<sub>2</sub> effects and climate mitigation options

Volker Grewe <u>DLR-Institute for Atmospheric Physics</u> TU Delft, Chair for Climate Effects of Aviation ECATS WG-Lead Knowledge for Tomorrow



#### DLR.de • Chart 2 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options Aviation emission and climate impact



DLR.de • Chart 3 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

### **Overview: Climate impact of aviation**



### How important are the aviation non-CO<sub>2</sub>-effects?



DLR.de • Chart 5 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

#### Time scales: Emission – RF – dT (Thought experiment)



DLR.de • Chart 6 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

## **Climate mitigation options for aviation**

- Technology Measures
  - New aircraft designs
  - Cruise altitude changes
  - Fuel efficiency
  - Emission reduction
  - Alternative fuels
- Operational Measures:
  - Avoidance of climate sensitive regions
  - Closure of airspace
  - Intermediate Stop Operations (
  - Formation filght
- Economical Measures
  - Market-Based Measures
  - Carbon off-setting





KIAD

Vashington Dulle

FL388 - 05:00 Day

Burkhardt et al. 2018

nate friendly, but conflicts

FL370: cheapest, but conflicts

FI 310: climate friendly, no con

Grewe et al. 2014

.⊆

ange

2



**Both Directions** 

-10

-5

Grewe et al. 2017

Eastbound

-15

-20

DLR.de • Chart 7 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

## **Climate mitigation options for aviation**

- Technology Measures
  - New aircraft designs
  - Cruise altitude changes
  - Fuel efficiency
  - Emission reduction
  - Alternative fuels
- Operational Measures:
  - Avoidance of climate sensitive regionsurkhardt et al. 2018
  - Closure of airspace
  - Intermediate Stop Operations (
  - Formation filght
- Economical Measures
  - Market-Based Measures
  - Carbon off-setting











DLR.de • Chart 8 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

## DLR-Project CATS: Climate Compatible Air Transport System Focus on a long-range aircraft



DLR.de • Chart 9 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

### **CATS-optimisation approach**

- Variation of initial cruise altitude and speed
- Optimal relation between costs and climate
- Definition of new design point
- Optimisation of the new aircraft for this new design point



DLR.de • Chart 10 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

A330: Potential of a climate change reduction: CATS-results

Variation in speed an cruise altitude



DLR.de • Chart 11 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

#### **CATS Final results**



DLR.de • Chart 12 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

## Different weather situations: Evolution of aircraft NO<sub>x</sub>





Weather type #3 "Weak and tilted jet"

# What happens if an aircraft emits NO<sub>x</sub> at location A compared to location B?





#### DLR.de • Chart 13 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options **Evolution of O**<sub>3</sub> [ppt] following a NO<sub>x</sub> pulse



DLR.de • Chart 14 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

## Avoiding climate sensitive regions: The approach



DLR.de • Chart 15 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

#### **Climatology based on 8 representative weather pattern**





- Very flat Pareto-Front  $\Rightarrow$  Large benefits at low costs
- Win-Win situations exist, where a reduction in both, climate impact and fuel use, can be achieved due to inefficiencies in ATM. Grewe et al. (2017), Matthes et al. (2017)



DLR.de • Chart 17 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

Why are non-CO<sub>2</sub>-effects important to be considered in





#### North-Atlantic Flight routed





DLR.de • Chart 20 > Airneth Workshop 10/12/2019 > V. Grewe • Climate impact of aviation and mitigation options

# Summary

- Enhanced knowledge on the processes related to aviation emissions.
- More than 50% of the climate impact from aviation due to non-CO<sub>2</sub> effects.
  - Aerosol impacts on clouds are uncertain
- Uncertainties remain, but may be better understood and can be employed to obtain robust solutions
- More mitigation studies, which include non-CO<sub>2</sub> effects.
  - Climate-sensitive areas could substantially reduce the climate impact of aviation at low cost increase.
  - CO<sub>2</sub> versus non-CO<sub>2</sub> trade-offs have to be solved
- Non-CO<sub>2</sub> effects play an important role and are not part of CORSIA, but may be included via equivalent CO<sub>2</sub> emissions or other means
- Combination of several options necessary: Alt. fuels + Tech + Operations





