## Economic impacts of regulating aviation's full climate impact – insights from the AviClim research project



GEFÖRDERT VOM



Bundesministerium für Bildung und Forschung

Wissen für Morgen

The Hague, 10 December, 2019

Dr. Janina D. Scheelhaase



### Outline

- 1. AviClim project overview: Possibilities for limiting aviation's full climate impact from an economic point of view
- 2. AviClim main results
- 3. AviClim summary
- 4. AviClim update: How to include aviation's full climate impact in the EU ETS?
- 5. Possibilities for including non-CO<sub>2</sub> species in the EU ETS
- 6. Costs and competitive impacts of an EU ETS regulating aviation's full climate impact
- 7. Conclusions

# **1. AviClim project: Possibilities for limiting aviation's full climate impact from an economic point of view:**

**AviClim research question**: How to best limit aviation's full climate impact ( $CO_2$ ,  $NO_x$ ,  $H_2O$ , contrails, etc.) from an economic policy point of view? The regulating measure should lead to the lowest costs as compared to other measures and avoid competitive distortions between airlines.

For the first time, the AviClim project addressed the **full climate impact** of aviation **simultaneously** and investigated the associated economic and environmental effects. AviClim was conducted 2011 – 2015. An update was provided in 2019.

Within this **interdisciplinary** research project, three DLR Institutes were involved: Institute of Air Transport and Airport Research (co-ordinator), Institute of Propulsion Technology and Institute of Atmospheric Physics.

### **1. AviClim: regulating measures and scenarios investigated**

Best options for **market-based and operational measures** for the reduction of all climate relevant species from aviation include:

- Climate tax on all important climate relevant species from aviation;
- Climate charge on NO<sub>x</sub> emissions plus CO<sub>2</sub> emissions trading scheme combined with climate-optimal flight trajectories for the minimization of contrails (applied on 50% of flights between 30 and 60°N on an altitude between 9 and 12 km);
- Open emissions trading scheme on CO<sub>2</sub>, NO<sub>x</sub>, H<sub>2</sub>O and contrails.

These measures have been selected in respect to economic efficiency, environmental benefits and practicability. They have been combined with **4 scenarios** which differ concerning the level of international support for these climate protecting measures.

#### 1. AviClim: geopolitical scenario overview





The blow-ups show the United Arab Emirates and Singapore, respectively.







## **1. AviClim: prices and metrics**

Within AviClim, three **alternative price paths** have been assumed:

| Price Path  | 2010 | 2020  | 2030  |
|-------------|------|-------|-------|
| Low Price   | 10   | 20    | 30    |
| High Price  | 10   | 40    | 80    |
| Mixed Price | 10   | 40/20 | 30/80 |

Prices in USD per ton of CO<sub>2</sub> equivalent.

Two **alternative metrics** for the translation of the climate impact of non  $CO_2$  species into  $CO_2$  equivalent have been investigated:

Average Temperatur Response (atr) 20 and Average Temperatur Response (atr) 50. ATR is the mean temperature change over a time horizon of 20 and 50 years.

## 1. AviClim modelling approach (1)





## 1. AviClim modelling approach (2)





### 2. AviClim main results (1): costs

Scenario "Greater EU", atr 50, Low Price Scenario



 $NO_{\chi}$  Charge includes  $CO_2$  trading and operational measures.

### 2. AviClim main results (2): costs

Scenario "World", atr 20, High Price Scenario



 $NO_{X}$ -Charge includes  $CO_{2}$  trading and operational measures.

### 2. AviClim main results (3): influence of climate metrics on costs

Climate Tax, 2030, different geographical scenarios, Low Price Scenario



#### 2. AviClim main results (4): demand for kerosene

Change in demand for kerosene in per cent compared to business as usual scenario, price elasticity of demand: -0.8, atr 50, in the year 2030

| Low Price<br>Scenario  | "Greater EU <sup>×</sup> | "Great Aviation<br>Countries" | "World" |
|------------------------|--------------------------|-------------------------------|---------|
| Climate Tax            | -1.8%                    | -5.9%                         | -6.7%   |
| Emissions<br>Trading   | -0.9%                    | -3.4%                         | -3.9%   |
| NO <sub>x</sub> charge | -0.6%                    | -1.9%                         | -2.2%   |
| High Price<br>Scenario | "Greater EU"             | "Great Aviation<br>Countries" | "World" |
| Climate Tax            | -5.1%                    | -15.8%                        | -17.8%  |
| Emissions<br>Trading   | -2.7%                    | -9.2%                         | -10.4%  |
| NO, charge             | -2.4%                    | -6.5%                         | -7.4%   |

 $NO_X$ -Charge includes  $CO_2$  trading and operational measures.

### 2. AviClim main results (5): temperature development

Scenario "Greater EU", Low Price Scenario, and Scenario "World", High Price Scenario, demand elasticity – 0.8 (case 2), metric atr 50, compared to a Business-as-usual temperature development



 $NO_{\chi}$  Charge includes  $CO_2$  trading and operational measures.



### 3. AviClim: summary

AviClim modelling results indicate that under the assumptions explained above, a **global emissions trading scheme** for the political regulation of both  $CO_2$  and non- $CO_2$  emissions from aviation would be the best solution from an economic and environmental point of view. The second-best solution would be the combination of both marked-based and operational measures.

Under a global emissions trading scheme, costs and impacts on competition could be kept at a moderate level. At the same time, environmental benefits are significant. The possibility to purchase emission permits from other sectors (so-called "open emissions trading scheme") is important for the positive outcome.

AviClim results will be important for the **political negotiations** on EU, UNFCCC and ICAO (International Civil Aviation Organization) level.



#### 4. AviClim update: research question

# How to include aviation's full climate impact in the EU Emissions Trading Scheme?

AviClim update has been conducted in 2019. Published:

Scheelhaase, Janina (2019) "How to regulate aviation's full climate impact as intended by the EU council from 2020 onwards", in: *Journal of Air Transport Management* 75, pp. 68-74

DLR.de · Chart 16

### 4. AviClim update: How does an ETS work in principle?

- Within an Emissions Trading Scheme, so-called emissions permits are traded. These enable the owner of the permit to emit a specific amount of CO<sub>2</sub>.
  Without permit, it is forbidden (and strongly sanctioned) to emit CO<sub>2</sub>.
- The total amount of CO<sub>2</sub> permits is **fixed** within an Emissions Trading Scheme. Therefore, the CO<sub>2</sub> emissions of all trading entities are capped (so-called emissions cap).
- Emissions permits are **freely traded** on the ETS market(s). This way, permits will be sold by companies with relatively low abatement costs for CO<sub>2</sub> and bought by companies with relatively high abatement cost.
- At the end of the day, an Emission Trading Scheme allows for a **cost-efficient reduction of CO**<sub>2</sub> in the economy.



### 4. AviClim update – EU ETS for aviation (basic facts)

- Legal framework: EU Directives 2008/101/EC and 2009/29/EC.
- Affected operations:
  - Flights departing and arriving in the EU, Iceland and Norway (EEA) from 2012 onwards ("original = Full Scope")
  - Intra-EEA flights only ("Stop-the-Clock" regulation for the period 2013-2016, still in operation as of December 2019) ("Reduced Scope")
  - General exclusions: Aircraft below 5.7 t Maximum Take-Off Mass (MTOM), VFR, government & military flights, and certain flights to remote regions, etc.
- Emissions cap:
  - 2012: **97%** of so-called historical emissions (2004-2006 average)
  - from 2013: **95%** of so-called historical emissions.



DLR.de · Chart 18

#### 5. Possibilities for including non-CO<sub>2</sub> species in the EU ETS (1)

The costs for complying with the EU ETS have been modelled by weighing the climate relevant emissions under the cap with the specific metric for  $CO_2$ ,  $NO_X$ ,  $H_2O$ , contrails, respectively. The metric  $atr_{50}$  translates the climate impact of all species into equivalent  $CO_2$ . This metric varies with the flight position p and the species.

$$Climate relevant species under the EU ETS = \sum_{peFlight} CO_{2(p)} + NO_{x(p)} * atr_{50(p)}^{(NO_x)} + H_2O_{(p)} * atr_{50(p)}^{(H_2O)} + dist_{(\delta)} * atr_{50(p)}^{(Cont)}$$

Where: NO<sub>X (p)</sub> is the amount of NO<sub>X</sub> emitted on the different flight altitudes, degrees of longitudes and latitudes (identical with flight position p) at different points in time. H<sub>2</sub>O is the amount of H<sub>2</sub>O emitted on flight position p. Contrails and CO<sub>2</sub> are differentiated by flight position p, too, the latter only to take the thrust-setting of the engines into account.

DLR.de · Chart 19

#### 5. Possibilities for including non-CO<sub>2</sub> species in the EU ETS (2)

The formula can be applied to all flights and airlines under the EU ETS on a **flight-by-flight-basis**.

Airlines can to do this **in retrospect** (after the flight has been conducted) since the actual flight route taken and the local atmospheric conditions at that time and flight position are known by the airline which conducted the flight as well as by the Air Navigation Service Provider (Eurocontrol, e. g.).

The **summation** of all individual flights' amount of  $CO_2$  equivalent equates to the total amount of climate relevant species (in million tons) under the trading scheme.

## 6. Costs and competitive impacts of an EU ETS regulating aviation's full climate impact (1)

#### Calculation of cost per airline under the EU ETS:

 $CO_2$  equivalent emittet – permits allocated for free = number of permits needed

number of permits needed \* price per permit = cost for complying with EU ETS



However, an estimation of the costs on individual companies' level would be associated with too many uncertainties. This is because airline's management strategies and market developments play a predominant role in this respect, which are difficult to foresee for external parties.



Therefore we estimate the cost impact on selected flights. It should be noted that these estimations are based on a number of simplifying assumptions, for instance on the EU ETS cap.



# 6. Costs and competitive impacts of an EU ETS regulating aviation's full climate impact (2)

Table 1. Climate relevant emissions of selected flights in the year 2020

| Departure | Destination | Aircraft | Seats | Distance (miles) | $CO_2 + Non-CO_2$ (tons) | CO <sub>2</sub> (tons) |
|-----------|-------------|----------|-------|------------------|--------------------------|------------------------|
| AMS       | CDG         | B737     | 132   | 248              | 9.8                      | 6.5                    |
| CGN       | TXL         | B738     | 189   | 289              | 12.0                     | 7.3                    |
| BCN       | DUS         | A319     | 144   | 726              | 46.5                     | 11.5                   |
| DUB       | FMM         | B738     | 189   | 814              | 62.6                     | 17.0                   |
| MUC       | PMI         | A320     | 144   | 756              | 54.3                     | 14.5                   |
| DUS       | DXB         | A332     | 278   | 3114             | 427.3                    | 105.3                  |
| MUC       | MIA         | A333     | 221   | 5008             | 590.5                    | 177.9                  |
| CDG       | LAX         | B772     | 280   | 5670             | 1088.8                   | 243.7                  |
| PRG       | JFK         | A332     | 225   | 4082             | 543.7                    | 128.6                  |

Source: DLR modelling results, based on Scheelhaase et al. (2014).

# 6. Costs and competitive impacts of an EU ETS regulating aviation's full climate impact (3)

Table 2. Cost for complying with the EU ETS per flight segment in the year 2020

| Departure | Destination | Airline | Rate of free | Price per permit                 | Cost for emission permits per flight segment in $\in$ |                        |
|-----------|-------------|---------|--------------|----------------------------------|-------------------------------------------------------|------------------------|
|           |             |         | allocation   | (€/t CO <sub>2</sub> equivalent) | $CO_2 + Non-CO_2$ regime                              | CO <sub>2</sub> regime |
| AMS       | CDG         | KL      | 0.56         | 8                                | 34.50                                                 | 22.60                  |
| CGN       | TXL         | 4U      | 0.62         | 8                                | 36.45                                                 | 22.29                  |
| BCN       | DUS         | 4U      | 0.62         | 8                                | 141.74                                                | 34.88                  |
| DUB       | FMM         | FR      | 0.62         | 8                                | 190.82                                                | 51.89                  |
| MUC       | PMI         | LH      | 0.56         | 8                                | 190.30                                                | 50.64                  |
| DUS       | DXB         | EK      | 0.52         | 8                                | 1628.31                                               | 401.24                 |
| MUC       | MIA         | LH      | 0.56         | 8                                | 2068.43                                               | 623.08                 |
| CDG       | LAX         | AF      | 0.56         | 8                                | 3813.84                                               | 853.63                 |
| PRG       | JFK         | DL      | 0.52         | 8                                | 2071.96                                               | 490.27                 |

Source: DLR modelling results, based on Scheelhaase et al. (2014).



## 6. Costs and competitive impacts of an EU ETS regulating aviation's full climate impact (4)

Table 3. Cost for complying with the EU ETS per passenger in the year 2020

| Departure | Destination | Airline | Seats | Load factor | Cost per passenger per flight segment in $\in$ |                        |
|-----------|-------------|---------|-------|-------------|------------------------------------------------|------------------------|
|           |             |         |       |             | $CO_2 + Non-CO_2$ regime                       | CO <sub>2</sub> regime |
| AMS       | CDG         | KL      | 132   | 0.81        | 0.32                                           | 0.21                   |
| CGN       | TXL         | 4U      | 189   | 0.76        | 0.25                                           | 0.15                   |
| BCN       | DUS         | 4U      | 144   | 0.76        | 1.29                                           | 0.32                   |
| DUB       | FMM         | FR      | 189   | 0.97        | 1.04                                           | 0.28                   |
| MUC       | PMI         | LH      | 144   | 0.79        | 1.66                                           | 0.44                   |
| DUS       | DXB         | EK      | 278   | 0.75        | 7.80                                           | 1.92                   |
| MUC       | MIA         | LH      | 221   | 0.79        | 11.79                                          | 3.55                   |
| CDG       | LAX         | AF      | 280   | 0.86        | 15.80                                          | 3.54                   |
| PRG       | JFK         | DL      | 225   | 0.86        | 10.76                                          | 2.55                   |

Source: DLR modelling results, based on Scheelhaase et al. (2014). Belly freight has not been taken into account. Load factor data taken from the airlines' websites.

### 7. Conclusions (1)

How to **regulate aviation's full climate impact** ( $CO_2$ ,  $H_2O$ ,  $NO_x$ , contrails etc.) in the EU? A likely approach is the inclusion of all climate relevant species from aviation in the European Emissions Trading Scheme. We analyzed the cost effects of this approach on the level of individual flights.

According to DLR modelling results, the **cost effects** of the EU-ETS addressing both  $CO_2$  and non- $CO_2$  emissions will be **much larger** than under the current scheme. The cost effects also depend on the **length** and **altitude of the flight**. Especially the **flight time operated on cruise level** is an important factor for the climate effect of each flight.

This will have consequences for the **competitive environment** of the aircraft operators under the trading scheme:

### 7. Conclusions (2)

- 1. Only optimizing fuel efficiency will **no longer be rewarded**. Instead it becomes more important to minimize both  $CO_2$  and  $NO_x$  emissions.
- 2. Airlines concentrating on **long-haul operations** will be facing a competitive disadvantage compared to aircraft operators mainly offering short- and medium-haul flights.
- 3. It will be important to include **all flights** to and from Europe to avoid competitive distortions between the airlines.

For environmental reasons, aviation's full climate impact and not just CO<sub>2</sub> should be **regulated soon**. We developed a **practicable method** for this approach.

## Thank you for audience!



